Sixième devoir de révision

[E3A09] Durée 4 h

L'usage de calculatrice est interdit.

- La présentation, la lisibilité, la qualité de la rédaction, la clarté et la précision des raisonnements, l'énoncé exact des théorèmes de cours utilisés entreront pour une part importante dans l'appréciation des copies.
- Ce problème a pour but d'étudier les crochets de Lie sur un \mathbb{R} -espace vectoriel de dimension 1, 2 ou 3.

Les parties I et II sont indépendantes, la partie III utilise certains résultats de la partie I.

E étant un \mathbb{R} -espace vectoriel, une application B de $E \times E$ dans E est dite antisymétrique si et seulement si

$$(\forall (\overrightarrow{u}, \overrightarrow{v}) \in E^2) (B(\overrightarrow{u}, \overrightarrow{v}) = -B(\overrightarrow{v}, \overrightarrow{u})).$$

On appelle crochet de Lie sur E noté [,] toute application telle que:

- $[,]: E \times E \to E,$
- [,] est bilinéaire,
- [,] est antisymétrique,
- $(\forall (\vec{u}, \vec{v}, \vec{w}) \in E^3)$ $([\vec{u}, [\vec{v}, \vec{w}]] + [\vec{v}, [\vec{w}, \vec{u}]] + [\vec{w}, [\vec{u}, \vec{v}]] = \vec{0}).$
- Dans ce problème l'ensemble des vecteurs de la géométrie plane est identifié à l'espace vectoriel \mathbb{R}^2 et l'ensemble des vecteurs de la géométrie dans l'espace à l'espace vectoriel \mathbb{R}^3 . Si E est le \mathbb{R} -espace vectoriel \mathbb{R}^2 ou \mathbb{R}^3 , la notation de la géométrie vectorielle pour les éléments de E sera adoptée : ils seront notés avec une flèche.
- Dans les parties I et III, l'espace vectoriel \mathbb{R}^3 est muni de sa structure euclidienne canonique, le produit scalaire usuel de vecteurs \vec{u} et \vec{v} sera noté $\overrightarrow{u} \cdot \overrightarrow{v}$ et le produit vectoriel de ces deux vecteurs sera noté $\vec{u} \wedge \vec{v}$.

On rappelle la formule :

$$(\forall (\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) \in \mathbb{R}^3)$$

$$(\overrightarrow{u} \wedge (\overrightarrow{v} \wedge \overrightarrow{w}) = (\overrightarrow{u} \cdot \overrightarrow{w}) \overrightarrow{v} - (\overrightarrow{u} \cdot \overrightarrow{v}) \overrightarrow{w}).$$

 $b_0 = (\vec{i}, \vec{j}, \vec{k})$ désigne la base orthonormale directe canonique de \mathbb{R}^3 .

- Si $n \in \mathbb{N}^*$, $\mathfrak{M}_n(\mathbb{R})$ représente l'espace vectoriel des matrices carrées d'ordre n, $\mathcal{S}_n(\mathbb{R})$ le sous-espace vectoriel de $\mathfrak{M}_n(\mathbb{R})$ constitué des matrices symétriques et $\mathcal{A}_n(\mathbb{R})$ le sous-espace vectoriel de $\mathfrak{M}_n(\mathbb{R})$ constitué des matrices antisymétriques.
- Si b est une base de \mathbb{R}^3 , $\vec{u} \in \mathbb{R}^3$ et f un endomorphisme de \mathbb{R}^3 , $\mathfrak{m}_b(\vec{u})$ désigne le vecteur de \mathbb{R}^3 formé par les coordonnées de \overrightarrow{u} dans la base b et $\mathfrak{m}_b(f)$ la matrice de f dans la base b.

Si $A \in \mathfrak{M}_3(\mathbb{R})$, φ_A désignera l'endomorphisme de \mathbb{R}^3 canoniquement associé à A c'est-à-dire l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base b_0 est A.

Questions de cours

- 1) Montrer que $\mathcal{A}_3(\mathbb{R})$ et $\mathcal{S}_3(\mathbb{R})$ sont supplémentaires dans $\mathfrak{M}_3(\mathbb{R})$. En particulier, si $C \in \mathfrak{M}_3(\mathbb{R})$, donner l'unique décomposition de C en $C = S_C + A_C$ où $S_C \in \mathcal{S}_3(\mathbb{R})$ et $A_C \in \mathcal{A}_3(\mathbb{R})$.
- 2) Si $S \in \mathcal{S}_3(\mathbb{R})$ avec $\operatorname{rg}(S) \leq 2$, montrer qu'il existe une base b de \mathbb{R}^3 orthonormée **directe** telle que

une base
$$b$$
 de \mathbb{R}^3 orthonormée **directe** telle que $\mathfrak{m}_b(\varphi_S)$ est de la forme $\begin{pmatrix} 0 & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma \end{pmatrix}$ où $\beta, \gamma \in \mathbb{R}$.

Application: on considère $S = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, déterminer une base b et les valeurs de β et α . Cal

Application : on considère
$$S = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
, dé-

terminer une base b et les valeurs de β et γ . Calculer pour tout $n \in \mathbb{N}^*$, la matrice S^n (distinguer n pair et n impair).

Partie I : exemples de crochets de Lie et premières propriétés

- 1) Exemples de crochets de Lie.
 - a) On considère E un \mathbb{R} -espace vectoriel quelconque, montrer que

$$[,] \left| \begin{array}{ccc} E \times E & \longrightarrow & E \\ (\overrightarrow{u}, \overrightarrow{v}) & \longmapsto & \overrightarrow{0} \end{array} \right.$$

est un crochet de Lie sur E.

b) Montrer que

$$[,] \left| \begin{array}{ccc} E \times E & \longrightarrow & E \\ (A,B) & \longmapsto & AB - BA \end{array} \right.$$

est un crochet de Lie sur $E = \mathfrak{M}_n(\mathbb{R})$ et sur $E = \mathcal{A}_n(\mathbb{R})$ où $n \in \mathbb{N}^*$. Est-ce un crochet de Lie sur $S_n(\mathbb{R})$? (Justifier la réponse.)

- 2) Crochet de Lie usuel sur \mathbb{R}^3 .
 - a) Montrer que

$$(\forall (\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) \in (\mathbb{R}^3)^3)$$

$$(\overrightarrow{u} \wedge (\overrightarrow{v} \wedge \overrightarrow{w}) + \overrightarrow{v} \wedge (\overrightarrow{w} \wedge \overrightarrow{u})$$

$$+ \overrightarrow{w} \wedge (\overrightarrow{u} \wedge \overrightarrow{v}) = \overrightarrow{0}).$$

En déduire que

$$[,] \left| \begin{array}{ccc} \mathbb{R}^3 \times \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (\overrightarrow{u}, \overrightarrow{v}) & \longmapsto & \overrightarrow{u} \wedge \overrightarrow{v} \end{array} \right|$$

est un crochet de Lie sur \mathbb{R}^3 .

b) On considère $\vec{a} \in \mathbb{R}^3$, $\vec{a} \neq \vec{0}$ et

$$\psi_{\vec{a}} \mid \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ \vec{u} & \longmapsto & \vec{a} \wedge \vec{u}. \end{array}$$

- i) Montrer que $\psi_{\vec{a}}$ est un endomorphisme de \mathbb{R}^3 .
- ii) Déterminer le noyau et le rang de $\psi_{\vec{a}}$.
- iii) Dans la suite de cette question, on pose $\vec{a} = \alpha \vec{i} + \beta \vec{j} + \gamma \vec{k}$ où $\alpha, \beta, \gamma \in \mathbb{R}$. Donner la matrice $A_{\vec{a}}$ de $\psi_{\vec{a}}$ dans la base b_0 et vérifier que $A_{\vec{a}} \in \mathcal{A}_3(\mathbb{R})$.
- iv) Calculer le polynôme caractéristique $de A_{\vec{a}}$.
- v) $\psi_{\vec{a}}$ est-il diagonalisable dans $\mathfrak{M}_3(\mathbb{R})$?
- vi) On considère une matrice antisymétrique quelconque de $\mathcal{A}_3(\mathbb{R})$. Montrer qu'il existe un unique $\vec{a} \in \mathbb{R}^3$ tel que $A = A_{\vec{a}}$.

Partie II : détermination des crochets de Lie en dimension 1 et 2

- 1) On considère E un \mathbb{R} -espace vectoriel quelconque muni d'un crochet de Lie [,].
 - a) Montrer que si $(\overrightarrow{u}, \overrightarrow{v})$ est une famille liée de Ealors $[\vec{u}, \vec{v}] = \vec{0}$.
 - b) La réciproque est-elle vraie?
- 2) Détermination des crochets de Lie en dimension 1.

On considère E un \mathbb{R} -espace vectoriel de dimension 1.

a) Si E est muni d'un crochet de Lie [,], montrer

$$\big(\forall (\overrightarrow{u},\overrightarrow{v})\in E^2\big)\big([\overrightarrow{u},\overrightarrow{v}]=\overrightarrow{0}\big).$$

- b) Quels sont tous les crochets de Lie sur E?
- 3) Détermination des crochets de Lie en dimension 2.

On considère E un \mathbb{R} -espace vectoriel de dimension 2 muni d'une base $B = (\overrightarrow{u_0}, \overrightarrow{v_0})$. Le déterminant de deux vecteurs (\vec{u}, \vec{v}) de E dans la base B sera noté $\det_B(\vec{u}, \vec{v})$.

- a) On suppose dans cette question que E est muni d'un crochet de Lie [,] quelconque. Si $(\vec{x}, \vec{y}) \in E^2$ avec $\vec{x} = x_1 \vec{u_0} + x_2 \vec{v_0}$ et $\overrightarrow{y} = y_1 \overrightarrow{u_0} + y_2 \overrightarrow{v_0}$ où $x_1, x_2, y_1, y_2 \in \mathbb{R}$, montrer que $[\vec{x}, \vec{y}] = \det_B(\vec{x}, \vec{y}) \vec{k_0}$ où $\vec{k_0} = [\vec{u_0}, \vec{v_0}].$
- b) Dans cette question, on considère \vec{k} un vecteur quelconque de E et on pose, si $(\vec{x}, \vec{y}) \in E^2$, $[\vec{x}, \vec{y}] = \det_B(\vec{x}, \vec{y}) \ \vec{k}$. Le but de cette question est de montrer que c'est un crochet de Lie sur E.
 - i) Montrer que

$$(\forall (\vec{u}, \vec{v}, \vec{w}) \in E^3)$$

$$(\det_B(\vec{u}, \vec{v}) \vec{w} + \det_B(\vec{v}, \vec{w}) \vec{u}$$

$$+ \det_B(\vec{w}, \vec{u}) \vec{v} = \vec{0}).$$

ii) Montrer que

$$(\forall (\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) \in E^3)$$
$$([\overrightarrow{u}, [\overrightarrow{v}, \overrightarrow{w}]] = [\det_B(\overrightarrow{v}, \overrightarrow{w}) \overrightarrow{u}, \overrightarrow{k}]).$$

- iii) En déduire que [,] est un crochet de Lie sur E.
- c) Quels sont les crochets de Lie sur E?

Partie III : étude des crochets de Lie en dimension 3.

Les questions 1) et 2) sont indépendantes. On rappelle que $b_0 = (\vec{\imath}, \vec{\jmath}, \vec{k})$ désigne la base orthonormale directe canonique de \mathbb{R}^3 .

1) Expression des crochets de Lie sur \mathbb{R}^3 .

Dans toute la question 1), [,] représente un crochet de Lie **quelconque** sur \mathbb{R}^3 . On pose alors

$$\vec{c_1} = [\vec{j}, \vec{k}] = \begin{pmatrix} c_{11} \\ c_{21} \\ c_{31} \end{pmatrix}, \vec{c_2} = [\vec{k}, \vec{t}] = \begin{pmatrix} c_{12} \\ c_{22} \\ c_{32} \end{pmatrix},
\vec{c_3} = [\vec{t}, \vec{j}] = \begin{pmatrix} c_{13} \\ c_{23} \\ c_{33} \end{pmatrix} \text{ et } C = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix},
\text{avec } C \in \mathfrak{M}_3(\mathbb{R}).$$

a) Le but de cette question est de montrer qu'il existe un unique endomorphisme f de \mathbb{R}^3 tel que pour tout $(\vec{x}, \vec{y}) \in (\mathbb{R}^3)^2$,

$$[\overrightarrow{x}, \overrightarrow{y}] = f(\overrightarrow{x} \wedge \overrightarrow{y}).$$

i) Montrer que si

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ et } \vec{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix},$$

alors

$$[\vec{x}, \vec{y}] = (x_2 y_3 - x_3 y_2) \vec{c_1} + (x_3 y_1 - x_1 y_3) \vec{c_2} + (x_1 y_2 - x_2 y_1) \vec{c_3}.$$

- ii) En déduire que pour tout $(\vec{x}, \vec{y}) \in (\mathbb{R}^3)^2$, $[\vec{x}, \vec{y}] = \varphi_C(\vec{x} \wedge \vec{y}).$
- iii) Montrer que φ_C est l'unique endomorphisme f de \mathbb{R}^3 tel que pour tout $(\overrightarrow{x}, \overrightarrow{y}) \in (\mathbb{R}^3)^2, [\overrightarrow{x}, \overrightarrow{y}] = f(\overrightarrow{x} \wedge \overrightarrow{y}).$
- b) D'après la question de cours 1) il existe un unique $S_C \in \mathcal{S}_3(\mathbb{R})$ et $A_C \in \mathcal{A}_3(\mathbb{R})$ tels que $C = S_C + A_C$.
 - i) D'après (Partie I(2)b(vi)), il existe un unique $\vec{a} \in \mathbb{R}^3$ tel que $A_C = A_{\vec{a}}$ c'est-àdire $\forall \vec{u} \in \mathbb{R}^3 : \varphi_{A_C}(\vec{u}) = \vec{a} \wedge \vec{u}$. Montrer que $2\vec{a} = \begin{pmatrix} c_{32} - c_{23} \\ c_{13} - c_{31} \\ c_{21} - c_{12} \end{pmatrix}$.

$$\begin{pmatrix} c_{13} & c_{31} \\ c_{21} - c_{12} \end{pmatrix}$$

- ii) Montrer que $2\vec{a} = \vec{i} \wedge \vec{c_1} + \vec{j} \wedge \vec{c_2} + \vec{k} \wedge \vec{c_3}$.
- iii) Montrer que $[\vec{\imath}, \vec{c_1}] + [\vec{\jmath}, \vec{c_2}] + [\vec{k}, \vec{c_3}] = \vec{0}$.
- iv) En déduire que $\varphi_C(2\vec{a}) = \vec{0}$ et que $\vec{a} \in \text{Ker}(\varphi_{S_C}).$

c) Déduire des questions précédentes que

$$(\forall (\vec{x}, \vec{y}) \in (\mathbb{R}^3)^2)$$
$$([\vec{x}, \vec{y}] = \varphi_{S_C}(\vec{x} \wedge \vec{y}) + (\vec{a} \cdot \vec{y}) \vec{x}$$
$$- (\vec{a} \cdot \vec{x}) \vec{y}).$$

2) Réciproque.

Dans cette question, on considère $S \in \mathcal{S}_3(\mathbb{R})$ et $\vec{a} \in \text{Ker}(\varphi_S)$ quelconques.

On définit [,] par

$$(\forall (\vec{x}, \vec{y}) \in (\mathbb{R}^3)^2)$$

$$([\vec{x}, \vec{y}] = \varphi_S(\vec{x} \wedge \vec{y}) + (\vec{a} \cdot \vec{y})\vec{x}$$

$$- (\vec{a} \cdot \vec{x})\vec{y})$$

et l'on veut montrer que [,] est un crochet de Lie sur \mathbb{R}^3 (dit crochet de Lie associé à S).

- a) Montrer que [,] est bilinéaire antisymétrique.
- b) On suppose dans cette question $\vec{a} \neq \vec{0}$, on pose $\rho = ||\vec{a}||$. Dans la question de cours 2) a été établie l'existence d'une base b de \mathbb{R}^3 orthonormale directe telle que

$$\mathfrak{m}_b(\varphi_S) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma \end{pmatrix}$$

où $\beta, \gamma \in \mathbb{R}$.

i) Montrer que le premier vecteur de b peut être choisi égal à $\frac{1}{\rho}$ \vec{a} .

Dans la suite de cette question, le premier vecteur de b est $\frac{1}{\rho}$ \vec{a} .

ii) Si \vec{u} , $\vec{v} \in \mathbb{R}^3$ avec

$$\mathfrak{m}_b(\overrightarrow{u}) = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \text{ et } \mathfrak{m}_b(\overrightarrow{v}) = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix},$$

montrer que

$$\begin{split} [\overrightarrow{u},\overrightarrow{v}] &= (u_3v_1 - u_1v_3) \, \overrightarrow{d} + (u_1v_2 - u_2v_1) \, \overrightarrow{e} \\ \text{où } \mathfrak{m}_b(\overrightarrow{d}) &= \begin{pmatrix} 0 \\ \beta \\ \rho \end{pmatrix} \text{ et } \mathfrak{m}_b(\overrightarrow{e}) = \begin{pmatrix} 0 \\ -\rho \\ \gamma \end{pmatrix}. \end{split}$$

- iii) Si $\vec{x} \in \mathbb{R}^3$, on note $\mathfrak{m}_b(\vec{x}) = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, calculer $[\vec{x}, \vec{d}]$ et $[\vec{x}, \vec{e}]$.
- **iv)** En déduire que si $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^3$ avec $\mathfrak{m}_b(\vec{x}) = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \ \mathfrak{m}_b(\vec{y}) = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \text{ et}$ $\mathfrak{m}_b(\vec{z}) = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix}, \text{ alors}$

$$[\vec{x}, [\vec{y}, \vec{z}]] = x_1 ((y_1 z_2 - y_2 z_1) \vec{d}' + (y_1 z_3 - y_3 z_1) \vec{e}')$$

où
$$\mathfrak{m}_b(\overrightarrow{d}') = \begin{pmatrix} 0 \\ \rho^2 - \beta \gamma \\ -2\rho \gamma \end{pmatrix},$$

$$\mathfrak{m}_b(\overrightarrow{e}') = \begin{pmatrix} 0 \\ 2\rho \beta \\ \rho^2 - \beta \gamma \end{pmatrix}.$$

- v) Montrer que [,] est un crochet de Lie sur \mathbb{R}^3 .
- **vi)** Application : en utilisant la question de cours 2), donner l'expression d'un crochet de Lie sur \mathbb{R}^3 associé à $S = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$.
- c) On suppose dans cette question $\vec{a} = \vec{0}$. montrer par un raisonnement similaire à III)2)b) que [,] est un crochet de Lie sur \mathbb{R}^3 .