Master 2 Professionnel "Électronique de Puissance"

Modélisation et Commande des Convertisseurs Statiques

Examen du 7 décembre 2006

Seul document autorisé : une feuille recto verso A4 manuscrite

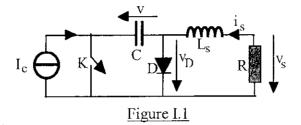
Durée : 2H

PROBLÈME I : COMMANDE D'UN CONVERTISSEUR DE COURANT

• On considère le convertisseur de courant DC-DC de la figure I.1. La source d'entrée I_e est un générateur de courant constant idéal. La position de l'interrupteur K est repérée par la variable u :

$$\begin{cases} u = 1 & \text{lorsque K est ouvert,} \\ u = 0 & \text{lorsque K est fermé.} \end{cases}$$

Dans la suite, on se propose d'asservir le courant de sortie i, à une valeur de consigne I.



Fonctionnement

Ce convertisseur est doté d'une commande en amplitude sur la tension v. Il s'agit d'une commande en "tension maximale" à la fréquence de découpage F. La consigne de tension sera notée V_M . On considérera que le courant de sortie i_s varie peu sur une période de découpage $T=\frac{1}{F}$.

I.1 – En supposant que la tension v s'annule avant la fin de chaque période de découpage, tracer sa forme d'onde en décrivant précisément chaque séquence. Tracer alors l'évolution de la tension v_D aux bornes de la diode. Dans quelle plage peut évoluer le courant de sortie i_s ? Pourquoi ?

Modèle moyen

I.2 – En s'appuyant sur les formes d'onde précédentes, déterminer l'équation différentielle non-linéaire vérifiée par le courant de sortie moyen I_s sous la forme $\frac{dI_s}{dt} = f(I_s, V_M)$. La charge sera modélisée comme une conductance variable de valeur $G = \frac{1}{R}$.

Modèle moyen "petit signal"

1.3 – On considère un point d'équilibre quelconque (V_{M_0}, I_{s_0}, G_0) . Donner la condition d'équilibre.

On pose :
$$V_M = V_{M,0} + \widetilde{V}_M$$
 ; $I_s = I_{s_0} + \widetilde{I}_s$; $G = G_0 + \widetilde{G}$.

I.4 – Déterminer le modèle aux petites variations sous la forme : $\hat{I}_s = A_i \cdot \hat{I}_s + A_v \cdot \hat{V}_M + A_G \tilde{G}$. Au moyen de la condition d'équilibre, Exprimer A_i et A_v en fonction uniquement de C, L_s, G_0, T et A_G en fonction de I_{s_0}, L_s et G_0 .

1.5 — Déterminer alors les fonctions de transfert $\frac{\widetilde{l}_s(p)}{\widetilde{V}_M(p)}\Big|_{\widetilde{G}=0}$ et $\frac{\widetilde{l}_s(p)}{\widetilde{G}(p)}\Big|_{V_M=0}$. Pour le schéma-blocs de la figure I.2, exprimer alors les gains K_v et K_g ainsi que la fonction de transfert du 1° ordre F(p) telle que F(0)=1.

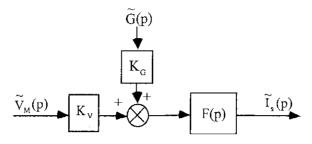


Figure I.2

On suppose que : $G_n < G_0 < G_{max}$; avec G_n charge nominale.

On pose:
$$x = \frac{G_0}{G_n}$$
, $A = \sqrt{\frac{CG_n}{2T}}$, $\tau = \frac{L_s G_n}{2}$, $V_n = \frac{I_{s_0}}{G_n}$.

I.6 – Exprimer K_v en fonction de A et x, K_g en fonction de V_n et x, et la constante de temps de F(p) en fonction de τ et x.

Régulation de courant

La consigne de courant est notée I_c . On pose $I_c = I_{c_0} + \widetilde{I}_c$ où I_{c_0} est la valeur souhaitée pour le courant de sortie $(I_{s_0} = I_{c_0})$. La figure I.3 représente le schéma-blocs global de la régulation de courant avec correcteur P.I..

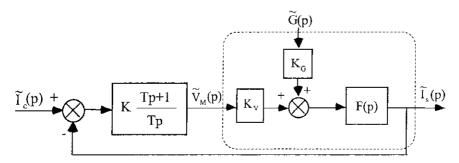


Figure I.3

I.7 – Justifier l'utilisation d'un correcteur PI.

I.8 – Calculer la fonction de transfert de régulation $F_G(p) = \frac{\widetilde{I}_s(p)}{\widetilde{G}(p)}\Big|_{\widetilde{I}_c=0}$. Que vaut l'erreur statique de position vis à vis de la perturbation \widetilde{G} ?

- I.9 En identifiant le dénominateur de la fonction de transfert au polynôme $1 + \frac{2z}{\omega_n} p + \frac{p^2}{\omega_n^2}$, exprimer ω_n et z en fonction de A, τ , x, T et K.
- I.10 On souhaite $\omega_n \le \omega_{n_{max}}$ et $z \ge z_{min}$. Expliquer alors qualitativement comment $\omega_{n_{max}}$ et z_{min} peuvent être choisis. Montrer ensuite comment, en utilisant un correcteur P.I. à paramètres K et T constants, on peut garantir les inégalités précédentes lorsque la charge (donc x) varie.

PROBLÈME II : COMMANDE D'UN ONDULEUR DE TENSION

• On se propose d'asservir la tension de sortie v_s de l'onduleur de la figure II.1 à une tension de consigne V_c . Pour cela, une commande en cascade, boucle interne de courant puis boucle principale de tension est envisagée.

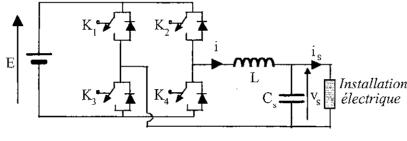


Figure II.1

• Boucle de courant (asservissement de i)

Le pont en H de la figure II.1 obéit au graphe d'état suivant, repéré par la variable u.

$$u = 1$$
 $K_1, K_4 \text{ ouverts}$
 $K_2, K_3 \text{ fermés}$
 $K_2, K_3 \text{ ouverts}$

II.1 – Décrire une méthode de commande en boucle fermée du courant i par fourchette de courant (ou encore par hystérésis). On pourra s'aider de schémas. La consigne en courant sera notée I_c. Le processus à commander sera décrit précisément.

• Boucle de tension (asservissement de v_s)

La boucle de courant précédente est supposée idéale ($i - I_c$).

- II.2 Modéliser le processus à commander et donner le schéma-blocs correspondant.
- II.3 Proposer une structure d'asservissement en boucle fermée de la tension v_s . La tension de consigne sera notée V_c . Justifier en particulier le choix du correcteur.
 - II.4 Exprimer la fonction de transfert en boucle fermée de poursuite $\frac{v_s(p)}{V_{s_s(p)}|_{i_s=0}}$.

- II.5 Expliquer pourquoi il peut être intéressant, dans la boucle de tension, de prendre en compte le courant de charge i_s .
 - II.6 Proposer et comparer différentes méthodes pour évaluer ce courant de sortie.
- $\Pi.7$ En supposant le courant de sortie idéalement mesuré et suivant la stratégie proposée en $\Pi.5$, calculer la nouvelle fonction de transfert $\frac{v_s(p)}{V_{ref}(p)}$.
 - II.8 Proposer alors une méthode de réglage du correcteur de tension.

* * *