
Towards a Lightweight HPF Compiler

Hidetoshi Iwashita1, Kohichiro Hotta1, Sachio Kamiya1,
and Matthijs van Waveren2

1 Strategy and Technology Division, Software Group
Fujitsu Ltd.

140 Miyamoto, Numazu-shi, Shizuoka 410-0396, Japan
{iwashita.hideto, hotta, kamiya.sachio}@jp.fujitsu.com

2 Fujitsu European Centre for Information Technology Ltd.
Hayes Park Central, Hayes End Road

Hayes UB4 8FE, UK
waveren@fecit.co.uk

Abstract. The UXP/V HPF compiler, that has been developed for the VPP
series vector-parallel supercomputers, extracts the highest performance from the
hardware. However, it is getting difficult for developers to concentrate on a
specific hardware. This paper describes a method of developing an HPF com-
piler for multiple platforms without losing performance. Advantage is taken of
existing technology. The code generator and runtime system of VPP Fortran are
reused for high-end computers; MPI is employed for general distributed envi-
ronments, such as a PC cluster. Following a performance estimation on differ-
ent systems, we discuss effectiveness of the method and open issues.
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1 Introduction

The progress of the most recent computer hardware is remarkable. Only several years
ago, vector computers provided the high performance needed to tackle HPC problems.
But now, multiprocessor systems with scalar CPUs, which are becoming cheaper and
more rapid each year, are assuming this position. Even the latest communication
equipment, such as InfiniBand, Gigabit Ether, IEEE1394, and USB2.0 is starting to
catch up in speed with the special hardware networks which support distributed par-
allel processing. Moreover, it is not only the speed of such change but diversity that is
the latest tendency. There is a variety of SMP, SMP cluster, and cc-NUMA architec-
tures with various cash construction and memory hierarchies on the market with the
objective of using multiple CPUs simultaneously and effectively.

We have developed UXP/V HPF, the HPF compiler for VPP800 and VPP5000 [1]
series vector-parallel computers [2]. This compiler offers valuable results, which in-
clude the world record of performance in HPF applications [3]. This is due to the
runtime system and to the compiler being expert enough in the characteristic of VPP
hardware that it can pull out the maximum performance. However the hardware life-
cycles are decreasing, and there are greater variations in the hardware, making it diffi-



cult to develop software specialized only in a specific hardware. Therefore, we need to
rethink the development method, and reconstruct the compiler into layered modules in
order to support multiple platforms. We also need technical breakthroughs in order to
avoid performance falls due to simplistic generalizations.

As CPUs become cheaper and networks become quicker, the importance of parallel
computing in a distributed environment is expected to increase. The most popular
application interface to describe distributed parallel computing seems to be MPI [4]
[5], which can be called a de-facto standard and includes all we need to do for parallel
computing. However, even if MPI is useful for computer scientists and professional
programmers, most HPC users seem to find it hard to use it to write real world appli-
cations. We don’t think naked MPI will be the best answer to write parallel programs.
We expect that MPI will be important not for programmers but for systems such as
HPF compilers and parallelization support tools.

The Grid [6] is a recent remarkable technology as a platform of distributed envi-
ronment. Many people expect it to increase in importance in the future.

OpenMP [7] is a language designed for a pure SMP environment and it does not
have features to handle data locality. Therefore, it is not suitable for application in a
distributed environment if no extensions are introduced. SGI and Compaq [8] have
developed vendor-specific OpenMP language extensions in order to support data
locality on their cc-NUMA architectures. The OpenMP Architecture Review Board
(ARB) is discussing whether language extensions for distributed memory model are
needed in OpenMP Version 3.0.

The SCore [9] technology contains a software distributed shared memory (SDSM)
layer called SCASH, which works on distributed memory and which offers application
software a view of shared memory. However, the OpenMP compiler for the SCore
environment requires some language extensions to OpenMP to specify data locality in
order to get a high performance [10].

VPP Fortran is an original data parallel language of Fujitsu and it is supported on
all VPP series computers. Similar to the current HPF, it uses put/get communication
that is supported on the VPP series, by their strong data transfer and hardware barrier
facilities. Because the VPP Fortran language specification requires one-sided commu-
nication, it is difficult to adopt send/recv communication instead of put/get communi-
cation. We have the experience of implementing VPP Fortran on AP1000 and
AP3000 distributed memory computers with the put/get communication method with
little hardware support [11].

We wish to show in this paper that our HPF compiler can support multiple plat-
forms without losing the performance. The structure of the HPF language processor is
introduced in Section 2 and it is applied to VPP series vector-parallel computers in
Section 3. In Section 4, development issues of the language processor on multiple
platforms that are not restricted to the VPP series are discussed. Section 5 estimates
the validity, and section 6 is the conclusion.



2 UXP/V HPF Compiler

UXP/V HPF system contains an HPF translator, which converts an HPF program into
Fortran code, and a Fortran vector compiler. This section introduces the FLOPS com-
piler platform and some important passes in it, which constitute the HPF translator.

Fig. 1. Configuration of the FLOPS HPF compiler

2.1 FLOPS Compiler

FLOPS (Fujitsu Labs’ Optimizing and Parallelizing System) is the framework of
source-to-source compilers whose main targets are distributed memory machines [12].
It is written in C and yacc (GNU Bison V1.27 for HPF). It has been used as a basis for
parallel compiler products on AP3000 and VPP series computers since its research
prototype was developed on the AP1000 scalar parallel computer [13]. The FLOPS
framework defines the intermediate representation (IM) used in FLOPS compilers and
provides access and utility functions onto the IM.

The configuration of the HPF version FLOPS compiler is shown in Fig. 1. IM is
formed as C structures in product versions and can be input and output as a text of S-
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expression style in the research system. For all procedures (subroutines and functions)
in the HPF source file, IM code is generated, parallelized, optimized, and finally out-
put as a Fortran code.

2.2 SPMD converter

While HPF program code represents single thread execution and a global name space,
SPMD (Single Program/Multiple Data) code represents execution and data for each
processor. Fig. 2 shows an example of the function of the SPMD converter.

Fig. 2. Parallelization and SPMD conversion

2.3 Parallelizer and Optimizer

The conversion of (a) to (b) in Fig. 2 implements simplistically the ON HOME direc-
tive. Good performance cannot be expected for the following reasons:
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� Each iteration of the loop will have an extra cost of condition and branch. Because
the conditional expression depends on the loop variable, it is hard for the Fortran
compiler to optimize it.

� The loop will not scale to the number of processors because the loop bounds are
still global.

Though it might be possible to convert (b) to (d) as an optimization of the SPMD code,
our Parallelizer finds loop partitioning corresponding to the ON directive in the sour-
ce code (a) and generates an intermediate code (c). Note that it is not always possible
to find a suitable loop partitioning even if the ON directive is specified, since the
generalized clause home(A(f (J))) requires computation of the inverse function of f
and the relation of ON and DO constructs may not be simple.

Other functions of the Parallelizer, such as the generation of ON directives and the
searching of loop independencies, makes automatic loop parallelization available in
simple cases.

The Optimizer reduces the number of interprocessor communications and runtime
system calls and arranges blocks of communications into asynchronous data transfers.

2.4 Library Generator

The Library Generator [14] & [15], which works at compile time, generates opti-
mized parallel code for the HPF Library and Fortran 95 transformational intrinsic
functions. It accepts the name of the target function and characteristics of the argu-
ments (such as type, rank, size, and distribution kind), then generates optimized code
suitable for the target function in the form of an HPF subprogram, and finally passes
the code to the HPF parser. This implementation solves the problem of the enormous
number of specific functions in HPF Library due to the large number of combination
of characteristics of the arguments, which makes that an optimized library would have
an impossible size.

The generated code is not expanded into the source code using inline-expansion but
it is linked as a subprogram with the source code. The name of the function as referred
to in the source code is changed to the corresponding name in the subprogram. We
called this method online-expansion. Online-expansion has the following merits com-
pared with inline-expansion:
� The compilation time increases less because the online-expansion does not increase

the size of each program unit in the source code. Optimization processes of the
Fortran compiler sometimes spend O(n2) or O(n3) of computation time for a pro-
gram of size n.

� Online-expansion is available even in contexts in which inline-expansion is difficult.
� The automatic remapping facility at the entry and exit points of the HPF subpro-

gram is useful.



3 Application to VPP Series

This section describes features of the VPP5000 hardware and how the current HPF
system utilizes them.

3.1 Distributed Memory Machine VPP5000

The VPP5000 is the latest generation of Fujitsu vector-parallel supercomputers [1]. It
is a distributed memory machine with up to 512 processor elements (PE) connected
with a high-speed crossbar network. The throughput of the crossbar is 1.6 Gbyte/s for
both input and output of each PE. Each PE has a vector unit of 9.6 Gflop/s, a scalar
unit with VLIW RISC architecture, and up to 16 Gbyte of 45 ns SDRAM memory.

The Data Transfer Unit (DTU), which the VPP series computers have in each PE,
can directly access local memory and communicate with other DTUs. The DTU en-
ables hardware put/get communication through the crossbar network without inter-
rupting any CPUs. The DTU recognizes remote data through the virtual global address.
In order to write data into remote memory (i.e., the put communication), the DTU
reads data from local memory with the specified access pattern and sends the data to
the remote DTU. The remote DTU then writes the data into its local memory using the
given global address and stride pattern. In order to read remote data into local memory
(i.e., the get communication), the DTU sends a request packet to the remote DTU,
asking him to send back the specified data as a put communication.

The DTU can handle packets with a two-dimensional stride, which support at least
two lower dimensions of a Fortran 90 array section. For example, the array section
A(i1:i2:i3,j1:j2:j3,1:n) can be sent and received with only n packets
(unless the packet size exceeds the limit) of zero-copy communication without inter-
rupting any CPU.

3.2 Runtime system

The parallel runtime system (RTS), which is called from the generated code of the
HPF translator, was made solely for the VPP800 and VPP5000 series. Parallel RTS
has two main features, parallel execution management and interprocessor communi-
cation. From our experience with VPP Fortran [16], we applied the put/get communi-
cation method in RTS in order to extract the highest performance of the VPP800/5000.

By taking advantage of the rich features of DTU and crossbar network topology,
RTS achieved almost the same throughput as the hardware peak performance of 1.6
GB/s/PE for big and regular data transfer, such as the transpose of a block-distributed
array. RTS can send not only contiguous data, but can also combine some Fortran 90
array sections into one packet for sending and receiving with the DTU.



3.3 Characteristics of Communication on VPP

While large array data can be treated well on the VPP, applications that include many
irregular accesses of small data tend to be inefficient. The cause of low performance is
a relatively high latency, several 10s of microseconds in total with software and hard-
ware overhead. Therefore, if the size of each packet is not much greater than 16KB
(=10 [microsecond] x 1.6 [GB/second]), the latency dominates the throughput speed.

Unlike send/recv communications that imply loose synchronization, the put/get
communication method often requires barrier synchronization in order to confirm if
the remote storage can be referred and overridden. In order to support such frequent
synchronizations, the VPP has a high-speed hardware barrier facility.

4 Multi-platform Development

This section discusses the possibility of developing compilers for multiple platforms
starting from the current HPF compiler on VPP series.

4.1 Development for High-end Computers

Fujitsu has designed a data parallel language VPP Fortran and provides a compiler for
it [16]. Even though two program codes written in VPP Fortran and in HPF/JA [17]
reach almost the same peak performance, the RTS of HPF is 20% larger than the RTS
of VPP Fortran. The difference is caused by the variety of data mapping in HPF (e.g.,
block cyclic mapping, indirect mapping, replication of partially distributed array,
alignment with stride, scalar template, and alignment between non-distributed arrays)
and by the dynamic management (e.g. automatic remapping at subprogram entry,
redistribution and realignment while keeping the linkage of alignment, etc.). The
heaviness of HPF RTS increases the cost of initialization at the entry points of sub-
programs. The cost becomes more important in the case of smaller applications.

Assuming that the VPP Fortran compiler will exist for the future high-end comput-
ers, we are considering to replace the SPMD converter and the succeeding passes of
the HPF compiler and the RTS of HPF with those of VPP Fortran, as shown in Fig. 3.
The following issues must be solved:
� The IM converter in Fig. 3 is needed. -- It would convert IM generated by the par-

allelizer and the optimizer into a form that is acceptable to the VPP Fortran com-
piler. Both IMs of HPF and VPP Fortran are basically compatible with the excep-
tion of some small differences.

� Some features of HPF that should be supported in RTS are not supported in the
RTS of VPP Fortran. -- They will be supported in the parallelizer and optimizer of
the compiler as much as possible so that the enhancement of RTS will be mini-
mized. For example, most redistribution can be solved at compile time with flow
analysis and program conversion.

Especially the second issue requires more research. We have had a good experience
with a highly tuned HPF/JA program, which can be shown to work well on the RTS of



VPP Fortran. This is described in Section 5. Because the VPP Fortran RTS is lighter
than the HPF RTS, the resulting system will be lightweight.

Fig. 3. HPF compiler on high-end platform

4.2 Development for A General Distributed Environment

Here we discuss how the UXP/V HPF compiler can be adapted to a general distribut-
ed environment that consists of multiple CPUs connected by a communication net-
work, including PC clusters. Instead of RTS, we are trying MPI [4] as a communica-
tion layer. MPI is used on many distributed platforms. Implementation using MPI
must be one of the following:
� Development of an RTS that calls MPI. The interface of the RTS will be changed

from the current RTS.
� Changing the code generation so that the code contains direct MPI calls instead of

RTS calls.
In both cases, most of the current passes including HPF parser, parallelizer, optimizer,
and library generator can be used unmodified, but the SPMD converter must be modi-
fied. The advantage of the latter case is the portability of the compiler system because
the RTS does not need to be recompiled for the different platforms. In the latter case,
however, it is unclear if the runtime environment such as IDs of the active processors
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can be managed in the generated code without resorting to RTS. An online expansion
technique similar to the library generator might be used.

While the put/get communication is available in MPI-2 [5], we adopt at first
send/recv as the primitive of communication since it is more popular and is already
evaluated on many platforms. Put/get communication is expected to be a good alter-
native in some cases.

The efficiency of communication is an open issue, since we do not rely on special
communication hardware such as those of VPP. Communication aggregation will be a
key technique in future development.

5 Performance Estimation

5.1 Performance Estimation for High-end Computers

This section estimates how the replacement of SPMD converter and RTS affects the
peak performance of an HPF program for the high-end implementation. We have
tuned the NAS Parallel BT benchmark code [18] on VPP5000 with HPF/JA language
extensions and vector optimization [2]. In order to compare with this result, we esti-
mated the performance of the generated code of the new compiler for high-end machi-
nes shown in Fig. 3. Instead of using the SPMD converter, we inspected the output
code of the current HPF compiler and made the VPP Fortran compiler generate almost
the same code, using VPP Fortran programming. This work is in effect an emulation
of the ideal function of the SPMD converter. The conversion of HPF to VPP Fortran
is described in Table 1.

The result of the comparison is shown in Fig. 4. For all data size classes S, A, B,
and C, the new compiler was estimated to give a higher performance than the current
compiler. The difference tends to become larger in smaller data size. To our impres-
sion, this is because the current HPF has the following expensive portions:
� Initialization at the entry points of user subprograms corresponding to dummy

arguments.
� Handling of a variety of data mapping in RTS.

As a conclusion of this performance estimation, we confirmed that the intermediate
code, which includes main features of HPF, can be translated into code that calls RTS
of VPP Fortran. Because RTS of VPP Fortran is lighter than RTS of HPF, we expect
that the resulting code will have a higher performance. Though they are not used in
this tuned benchmark code, HPF has important features that VPP Fortran does not
support, such as redistribution. Such features must be carefully implemented in order
to keep the generated code and RTS lightweight. If the new compiler supports them
with little help of RTS, it achieves almost the same performance as the VPP Fortran
compiler on the same high-end computer.



Table 1. Conversion from HPF to VPP Fortran

HPF language items Corresponding VPP Fortran language
items

Data mapping with PROCESSORS,
DISTRIBUTE, TEMPLATE, ALIGN,
SHADOW, and SEQUENCE

Corresponding combination of
PROCESSOR, INDEX PARTITION,
GLOBAL, and LOCAL

INDEPENDENT directive SPREAD DO directive with the loop decom-
position generated by the HPF compiler

ON HOME construct and RESIDENT
for execution of single processor

SPREAD REGION construct

ASYNCHRONOUS construct
(in HFP/JA extension)

EQUIVALENCE (of local variable to global
variable) and SPREAD MOVE construct

Asynchronous REFLECT directive
(in HFP/JA extension)

OVERLAPFIX directive

Access of sequential and unmapped vari-
ables

Specified as LOCAL and careful manual
maintenance of data consistency

Fig. 4. Estimation of HPF compilers for high-end machines
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5.2 Estimation of HPF calling MPI

This section estimates the characteristics of the performance of the new HPF compiler
that employs MPI as a communication primitive. Using the medium size SPEC
OMPM2001 SWIM benchmark [19], we made the following two executable codes
and evaluated them on the VPP5000.

HPF on RTS An HPF program compiled with the current HPF compiler, which em-
ploys effective RTS developed only for VPP800 and VPP5000

HPF on MPI An SPMD program with MPI, written manually with the purpose of
estimating the performance of code that the new compiler will generate

Fig. 5 shows the result. The new HPF on MPI was estimated to give better perfor-
mance than the current HPF on RTS. This estimation does not guarantee that the new
compiler gives high performance for all application programs, but offers us very good
prospects.

Fig. 5. Estimation of HPF compilers using MPI

Using the analyzer tool, we measured the cost distribution. Fig. 6 displays the total
cost for each procedure of the benchmark program using all employed processors.
Since the costs were measured on the basis of elapsed time, it means that there is a
good load distribution and little overhead in the subprogram with the result that its
cost is not much greater than the one of serial execution. In the MPI version, the co-
lumn comm shows the total costs of MPI communication and the calling of MPI; in
RTS version, the communication cost is included in each subprogram. We conclude
from the performance estimation the following:
� The RTS version has a large cost in the main program, and this may break the scal-

ability of the parallel execution. The cost (elapsed time) includes allocation to the
virtual global memory, broadcasting the global addresses, and interprocessor fork
operation with large initialized data. Such initialization costs can be ignored in the
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typical long-term jobs that appear on the VPP. However, if we take short-term ex-
ecution without a high-speed network into account, it should be improved.

� In contrast, the MPI version shows perfect load balancing in the main program, in
which all processors do not have to do extra work (except the communication cost
summed up into comm). This is because the implementation does not use virtual
global memory or global variables. The initialization cost of the MPI environment
is not visible in this measurement on VPP5000 but it may appear in measurements
on other distributed memory environments.

� The communication cost of the MPI version increases more than twice between two
and four processors. We use in this performance estimation only MPI_SEND,
MPI_RECEIVE, and a collective communication MPI_SENDRECV for the pur-
pose of interprocessor communication. So, more improvement might be possible if
we use other functions such as MPI_REDUCE and non-blocking communication
and if we take account of communication scheduling.

� We wrote an MPI version of the program, in which MPI functions are not directly
called from the source code but called from a shell, which itself is called from the
source code. The total cost of shell routines was trivial (only 0.07 second) com-
pared to the whole cost of the program.

Fig. 6. Cost analysis of current and new HPF compilers

6 Conclusion

The current UXP/V HPF compiler has achieved a high performance by using the
strong data transfer and hardware barrier facilities of the VPP800/5000 effectively.
The performance relies on high-level user tuning and a sufficient size of the problem.
In order to develop compilers for a general distributed environment, we cannot rely on
these facilities, high-level user tuning and large problem sizes. We have discussed
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how to develop compilers for multiple platforms starting from the current HPF com-
piler on VPP series. The keyword is lightweight. Technically, it is necessary to make
the following items lightweight:
� Initialization cost at the beginning of the program and entry point of the subpro-

grams, and
� Runtime information managed by RTS and the variety of data mapping handled by

RTS.
In addition, the following lightness is also required:
� Reducing the user’s (especially beginner’s) load, in order to get a reasonable per-

formance without perfect user tuning, and
� Reducing the redundancy of the development, in order to quickly support many

platforms.
We have discussed performance estimations of the lightweight system on both

high-end computers and on general distributed systems.
We consider common techniques such as MPI, Grid, and SCore as communication
primitives. Instead of using put/get communication, loose synchronization, a feature of
send/recv communication, will reduce the barrier synchronization and create opportu-
nities for pipelined parallelism.
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