
 Parallelisation of Surface-Related Multiple Elimination

G. M. van Waveren
High Performance Computing Centre, Groningen, The Netherlands

<waveren@cs.rug.nl>
and

I.M. Godfrey
Stern Computing Systems, Lyon, France

<igodfrey@acri.fr>

This paper presents the first parallelisation of the surface-related multiple
elimination method. This method is used in the seismic industry to eliminate
multiple data from recorded seismic data. Both data-parallel and
control-parallel implementation schemes are investigated. A realisation of the
data-parallel implementation on the SSP/Application, a symmetric
multi-processor DEC-Alpha system is described.

1. Introduction

The efficient elimination of multiples from marine seismic data is one of the outstand-
ing problems in geophysics. The marine seismic industry is a multi-million dollar mar-
ket, and improvement of the accuracy and efficiency of the removal of multiples will
lead to cost reduction and shorter turnaround times in this industry. The efficient elimi-
nation of multiples requires large amounts of computer time. This prompted us to inves-
tigate the applicability of using HPCN technology to increase the efficiency of this type
of application.

Multiple data is seismic data which has reflected more than once in the sub-surface. In
fig. 1, several types of multiples are shown. We distinguish between surface-related
multiples, multiples which have at least one bounce against the free surface before being
recorded, [(a)-(c) in the figure] and internal multiples, which have reflected at least
three times before being recorded, without any reflection against the free surface being
involved [(d) in the figure].

Many multiple elimination techniques have been developed, as described in Yilmaz
(1987). Surface-Related Multiple Elimination (SRME), described by Berkhout (1982)
and Verschuur et al. (1991, 1992, 1993), has many advantages over other multiple elim-
ination methods, particularly in the number of types of multiples that are removed.
SRME theoretically removes all surface-related multiples, which make up 90 % of the
total multiple events. Only internal multiples should remain in the data after SRME.
Figures 2 and 3 illustrate the use of SRME.

This article describes the parallelisation of SRME in order to make the method more
attractive for routine data processing. It is, to our knowledge, the first parallelisation of
this method. We investigated the application of data-parallel and control-parallel tech-
niques to this method. A realisation and timings of a data-parallel implementation of
this method on the SSP/Application, a symmetric multi-processor DEC-Alpha system,
is described.

In paragraph 2, the theory of SRME is discussed. In paragraph 3, the data-parallel
implementation and its realisation and the control-parallel implementation of SRME are
described. We conclude with the discussion in paragraph 4.

2. Theory of SRME

Surface-Related Multiple Elimination is a technique used to remove all multiples that
are generated through a reflection against the free surface. The free surface is the
top-most surface in the seismic experiment, i.e the sea-surface for marine seismics and
the earth surface for land seismics. No information about the sub-surface is needed for
the elimination of multiples in this technique, only the free surface reflectivity and the
source wave field are used to define a surface operator for the actual data. After remov-
ing directional source and receiver effects, the observed field at the free surface z0,
expressed in the frequency (ω) domain, is:

(1)

where is the matrix containing all seismic shot records before multiple elimina-
tion. is the matrix containing all seismic shot records after multiple elimination.

is the surface operator. For the marine case, reflectivity is approximated by a
coefficient -1. The sum of the second, third, etc. terms on the right-hand side of equa-
tion (1) constitute the surface-related multiples. These are subtracted from , the
data with surface-related multiples, in order to obtain , the data without sur-
face-related multiples. Note that besides being a function of the depth z, the matrices are
also a function of the frequency ω. The set of equations turns out to be independent with
respect to the frequency. This characteristic will be exploited in the data-parallel imple-
mentation.

The multiple elimination process is converted to a recursive form for the actual compu-
tation:

(2)

for i = 1, 2, is the i-th order term in equation (1). The recursion is started with
 = 0.

P0 z0() P z0() A ω() P z0(){ }2– A2 ω() P z0(){ }3 …–+=

P z0()
P0 z0()

A ω()

P z0()
P0 z0()

Pi 1+ z0() P z0() I A ω()Pi z0()]–[=

Pi z0()
P0 z0()

The sequential pseudo-code for this algorithm is shown below.

procedure srme
begin

for i:=1 to Nfreq do begin (* i is the frequency counter *)
copy frequency data from disk to central memory
for j:=1 to Nmult do begin (* j is the recursion counter *)

if (j.eq.1) then
set P0(z0) = 0

else
get last result Pj-1(z0)

endif
calculate Pj(z0) using recursion relation
store Pj(z0) in central memory

end {j loop}
end {i loop}

end

Nfreq is the number of frequencies involved in equations (1) and (2). This number is typ-
ically in the order of a few thousand. Nmult is the number of recursions in equation (2).
This number is typically 5 or 6. Within the inner j-loop in the pseudo-code, the recursive
equation (2) is solved for one frequency. Within the outer i-loop of the pseudo-code, this
equation is solved for all frequencies.

The above-mentioned surface-related multiple elimination technique is implemented in
a seismic data processing sequence in the following way:

1. First the field data are preprocessed, e.g. the direct and surface waves are removed,
and the data are interpolated for near-offset traces. The resulting data is stored in a
disk file containing traces in the time domain.

2. Monochromatic data matrices are constructed using a Laplace transform. These
matrices are stored in a disk file.

3. The source wavelet is estimated based on a selected number of shots.
4. Matrix multiplication and subtraction steps are recursively performed for each order

of multiple to be eliminated, as specified in equation (2).
5. The resulting data are inverse-Laplace transformed to the time domain to give the

multiple-free pre-stack traces.

3. Parallel Implementation

Step 4 in the above-mentioned sequence is the most time-consuming phase. The aim of
this project was to reduce elapsed time by executing the multiple-elimination in parallel.

We considered two options for parallelisation, i.e. data parallelism and control parallel-
ism. These options are illustrated in figure 4.

3.1. Data-Parallel Version

3.1.1 Implementation

Data parallelism can be attained by exploiting the fact that the set of equations (1) are
independent with respect to frequency. Thus each frequency is executed independently.
The resulting data-parallel implementation is shown in the following pseudo-code:

procedure srme
begin

split the Nfreq frequencies into Nproc parts
for k:=1 to Nproc do begin

(* Nproc processes are started simultaneously; k is the processor counter *)
for i:= fk,first to fk,last do begin (* i is the frequency counter *)

copy frequency data from disk to central memory
for j:=1 to Nmult do begin (* j is the recursion counter *)

if (j.eq.1) then
set P0(z0) = 0

else
get last result Pj-1(z0)

endif
calculate Pj(z0) using recursion relation
store Pj(z0) in central memory

end {j loop}
end {i loop}

end {k loop}
end

Nproc is the number of processors available. Nfreq and Nmult are defined as in the sequen-
tial pseudo-code. An extra k-loop is introduced in the data-parallel pseudo-code, com-
pared to the sequential pseudo-code. In this loop, Nproc parallel tasks are started. Each
of these tasks will handle part of the frequency spectrum, i.e. task k will handle the fre-
quency range fk,first to fk,last. Thus the i-loop will now cover the frequency range of task
k, instead of the whole frequency range 1 to Nfreq in the sequential pseudo-code.

3.1.2 Realisation

The above-mentioned data-parallel implementation was realised on the SSP/Applica-
tion, a symmetric multi-processor DEC-Alpha system. The SRME program is written in
standard Fortran 77 and was compiled using full optimisation. Parallelisation was

achieved using the features of the SSP/Soft Macrotasking Library. This library provides
a set of routines to create parallel tasks, to synchronise between the tasks, and to lock
critical sections - the calling interface is compatible with the Cray Macrotasking library.

In our design, parallel tasks were created just once at the beginning of the multi-
ple-elimination phase, so startup overhead is small. Each task executed the same code
and processed an equal fraction of the frequency range. For local arrays, such as the
input data matrix array, memory allocation was multiplied by the number of tasks.
Access to the data matrix file was locked by the tasks.

This study was performed on the above-mentioned SSP/Application. It was configured
with 2 Alpha AXPTM processors (1) operating at 190MHz, sharing 128MB of memory
through a 667MB/s bus. Disk space was limited to 2GB. Peak performance of this sys-
tem is 380Mflops.

3.1.3 Timing Results

Synthetic test cases were used for testing and timing. To verify the parallel implementa-
tion we began with a small data case comprising 26 shots, each with 26 records of 1024
samples. The memory requirement of the program is dominated by the output trace
array; 5.3MB for this small survey.

We then scaled up the problem to a more realistic size; 301 shots, 121 records, 2048
samples. To process the whole of this survey at one time would exceed the physical
memory of the benchmark system. To avoid paging, therefore, we recorded times for
subsets of the whole survey, based on two frequency ranges (6 and 12) and 3 groups of
shots (31, 51, and 80). For each test, the elapsed time of the multiple elimination section
was recorded for the original serial version and the new parallel version. The tests were
run more than once, and the speedup results shown in figure 5 are the ratio of the mini-
mum serial time to the minimum parallel time.

3.2. Control-Parallel Version

3.2.1 Implementation

Control parallelism can be attained by splitting the calculation of each multiple recur-
sion in equation (2) over the different processors. The resulting control-parallel
pseudo-code is shown below:

(1) The maximum number of processors in this system is 4.

procedure srme
begin

for j:=1 to Nmult do begin (* j is the recursion and the processor counter *)
for i:=1 to Nfreq do begin (* i is the frequency counter *)
copy frequency data from disk to central memory

if (j.eq.1) then
set P0(z0) = 0

else
receive last result Pj-1(z0) from processor (j-1)

endif
calculate Pj(z0) using recursion relation
send Pj(z0) to processor (j+1)

end {j loop}
end {i loop}

end

In this control-parallel implementation, each recursion is calculated on a different proc-
essor. The j-loop variable is now both a recursion and a processor counter. Processor j
will now receive recursion result Pj-1(z0) from processor (j-1), calculate recursion result
Pj(z0) and send this result to processor (j+1).

3.2.2 Realisation

This control-parallel implementation is currently being realised on the 16-processor
TMC CM-5 of the High Performance Computing Centre of the University of Gronin-
gen.

4. Discussion

This paper summarises the results of the first known parallel implementation of the
SRME program from the Delphi Software Release. A data-parallel decomposition over
the frequencies was used, and implemented using the Macrotasking Library in the
SSP/Soft environment. Preliminary results demonstrate a maximum real speedup of
1.87 on the multiple elimination phase of the complete process.

Work is continuing to increase the timing sample and to compare different parallelisa-
tion techniques, such as the control parallelism mentioned earlier.

cists,
References

Berkhout, A.J., 1982, Seismic Migration: Imaging of acoustic energy by wave field
extrapolation. A. Theoretical aspects, second edition: Elsevier Science Publ. Co., Inc.,
p.211-218.

Verschuur, D.J, Berkhout, A.J., and Wapenaar, C.P.A., 1992, Adaptive surface-related
multiple elimination, Geophysics, Volume 57, p.1166-1177.

Verschuur, D.J., and Berkhout, A.J., 1993, Integrated Approach to Multiple Elimination
and Wavelet Estimation, 55th EAEG meeting, exp. abstracts, abstract B025.

Verschuur, D.J., 1991, Surface-Related Multiple Elimination, an inversion approach,
PhD Thesis, Delft University of Technology.

Yilmaz, Öz, 1987, Seismic Data Processing, Society of Exploration Geophysi
Tulsa, OK, USA.

Acknowledgements

We wish to thank prof. dr. A. J. Berkhout and the Delphi group of the Delft University
of Technology for the privilege of using the Delphi software release for the purpose of
parallelisation. Dr. G. M. van Waveren wishes to thank Stern Computing Systems for the
hospitality given to him.

	1. Introduction
	2. Theory of SRME
	3. Parallel Implementation
	3.1. Data-Parallel Version
	3.1.1 Implementation
	3.1.2 Realisation
	3.1.3 Timing Results

	3.2. Control-Parallel Version
	3.2.1 Implementation
	3.2.2 Realisation

	4. Discussion
	References
	Acknowledgements

