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ABSTRACT 

This contribution deals with the transposition of fractal 
robustness in automatics and mechanics through the 
CRONE control and the CRONE suspension. 

Fractal robustness expresses the robustness of damping 
in nature, that fractality ensures through non integer deriva- 
tion. This concept is, in this case, illustrated by the relaxa- 
tion of water on a porous dyke, its damping being indepen- 
dent of the motion water mass. This robust phenomenon is 
paradoxical in the integer approach of mechanics, where 
any relaxation presents a damping linked to the carried 
mass. 

The dynamic model which governs this phenomenon is 
established It consists in a differential equation of non in- 
teger order between 1 and 2, whose solution depends on the 
carried water mass, but whose damping is independent of 
it The transposition of this template in automatics and 
mechanics defines the non integer approach used by the 
CRONE control and the CRONE suspension. 

I. INTRODUCTION : FlWCTAL ROBUSTNESS 
AND CRONE CONTROL 

1.1. Analysis of a robust natural relaxation 

As early as in the 17 th century, the people who built 
dykes had noted the damping properties of the very distur- 
bed dykes and particularly those forming air pockets which 
cm be compressed by the advance of water, 

The relaxation of water on such dykes has indeed been 
the subject of advanced experimental analyses. In particu- 
lar, the time variation of the water level on the sides of the 
dykes has been recorded. In the case of fluvial or coastal 
dykes which are very damping (or absorbing) because of 
their porous vohunic structure and rough surfacic structu- 
re, the results of these analyses reveal that : 
- the natural frequency of the relaxation is dfferent accor- 
ding to whether the dyke isjluvial or coastal ; 

- the damping of the relaxation seems to be independent of 
the dykz. whether it isjluvial or coastal. 

Given that the fluvial and coastal tests can be distin- 
guished by widely differing water masses carried, the ana- 
lyses seems to show that the relaxation is characterized by 
a natural frequency which depends on the motion water 
mass and by a damping ratio which is independent of it. 

Although it appears paradoxical in the integer approach 
of mechanics, where any relaxation presents a damping 
linked t.0 the carried mass, this result reveals the insensi- 

tivity of the damping ratio to a parameter at I- in this 
case the motion water mass. It therefore expresses the ro- 
bustness of the stabiIity degree of the relaxation phe- 
nomenon. 

The aim of the following developments consists in de- 
termining the mathematical principle of the robustness of 
such a phenomenon, notably in establishing the differen- 
tial equation which governs it. 

1.2. Study process and water-dyke interface 

Let us consider a water mass, M, the motion of which 
is due to its penetration in a dyke whose permeability is 
due to its porosity (Pig. 1). By denoting its speed by V(t), 
applying the fundamental law of dynamics allows to write 
the differential equation : 

water mass in motion 

Fig. 1. Study plant 

lf S represents the flow section of water, it is possible 
to express speed V(t) versus flow Q(t), namely 

v(t)=Q(t)/S; (2) 
moreover, force F(t) can be expressed versus dynamic pres- 
sure P(t) at the waterdyke interface, namely 

F(t) = p(t) S. (3) 
By putting expressions (2) and (3) into relation (l), 

one obtains a new form of the differential equation (1) : 

M !a+p(t)=o. 
s2 d 

(4 

Furthermore, by taking into account the fractality of 
porosity and the reoursivity of fractality, we have shown 
[l] fhat warer jlow Q(t) is proportional to the non integer 
derivative of the dynamic pressure P(t) at the water-dyke 
intedace, namely : 

Q(t)=&(-dr-tP(r) withlcnc2; (5) 

this equatio~repre&ns the dynamic model of the wa- 
terdyke inter&e. 
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1.3. Non integer order differential equation as a 
dynamic model governing the relaxation 

cement of the template being linked to the modification of 
parametexM. 

Putting the expression of Q(t) given by (5) into rela- 
tion (4) makes it possible to establish a linear differential 
equation of non integer order n between 1 and 2, namely : 

In automatic control, the aim consists in obtaining a 
similar frequency behaviour, notably : 
e an open loop Nichols locus which forms the template so 

dejned for the mnid parametric state of the plant ; 
- a vertical sliding of the template at the time of a 

reparamewation of the plant. 
$&q-%~+P(t)=o. 

or, under canonical &rm : 

Zn Ji P(t)+P(t)=O, 
u 

by putting 
z = M-L 1/a. 

( 1 s2 ooa-l 

1.4. Functional representation leading to a fre- 
quency template 

Let us take the Laplace transform of the differential 
equation (7) which governs the relaxation. One obtains : 

(7 sy p(s)+p(s)=O. 0 
from where one draws : 

P(s) = - (+J P(s) - (10) 
This opxationai equation\~tmnslated by the functional 

diagram of Fig. 2 which reminds that of a free control loop 
(E(s) = 0). Because of an unit feedback, the direct chain de- 
termines an open loop transmittance of the form : 

is)=(+J=(y ’ (11) 
which is just the transmittance of a kn integer integrator 
whose unit gain frequency (or transition frequency) is 
a,, = l/t. 

- P(s) 
*. 

1 n 
c-1 ZS 

I I 
Fig. 2. Fwzctional diagram making it possible to dejk 

an open hop transfer 

Given that arg p(jo) = nx/2 with 1 c n c 2, the 
Nichols locus of b(io) is a vertical straight line of 
abscissa between -x/2 and -A. 

As previously, the order n-l non integer derivation 
(relation (5)) is limited to a range of medium frequencies. 
So, the vertical straight line of abscissa -n n/2 is reduced 
to a vertical straight line segment lying around unit gain 
frequency q, (Fig. 3). This segment is called open loop 
frequency template (or more simply template). 

1.5. Idea of the second generation CRONE 
strategy 

When water mass M changes, frequency o, is modified 
in conformitv with the relation . 

(12) 

So, the template slides on itself at the time of a varia- 
tion of the water mass. Such a vertical displacement of the 
template ensures the constancy of phase margin am (Fig. 
3) and, consequently, that of the distance to the critical 
point given that am then gives a significant measure of it. 
This expresses the robustness of stability degree. The 
greater the robustness, the longer the template, the displa- 

The search for the synthesis of such a template defines 
the non integer approach that the second generation 
CRONE control uses [ll. 
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Fig. 3. A vertical skzight line segment dejines 
the template in the Nichols’s plane 

II. PRINCIPLE OF THE CRONE SUSPENSION 

The CRONE suspension results from a traditional 
suspension model whose spring and damper are replaced by 
a mechanical system defined by a non-integer order force- 
displacement transmittance. This system is called the 
CRONE suspension because of the link with the second- 
generation CRONE control, i.e. the vertical template. That 
is why the principle of the second-generation CRONE con- 
trol is used to synthesise the CRONE suspension’s 
transmittance. The suspension parameters are determined 
from a constrained optimisation of a performance criterion. 

II.1 Vehicle model 

The basic mathematical model used for the study is 
composed of two mass dynamic systems consisting of the 
body mass m2 (sprung mass) and the wheel mass ml 
(unsprung mass) Fig. 4. kI is the stiffness and bI the 
damping coefficient of the tyre. q(t) is the deflexion of the 
road, zI(t) and Q(t) are the vertical displacements of the 
wheel and body respectively. The suspension system, lo- 
cated between the sprung and unsprung masses, develops a 
force fz(t) which can be generated by an active, semi-active 
or passive device [3], 141. For example, a traditional sus- 
pension develops a force f2(t) which is a function of the 
relative displacement z12(t) tid given by: 

fi(t) = kz zlz(t) + bz &z(t) . (13) 
in which 

ztz(t) = a(t) - z2(0 (14) 
and k2 the stiffness of the spring and b the damping coef- 
ficient. 

The CRONE suspension develops a force fi(t) which is 
a function of the relative displacement z12(t) and which 
obeys symbolically to the general relation: 

Fz(s) = C(s) 212(s) , (15) 



in which C(s) is the suspension transmittance defined by a 
non integer expression. 

Fig. 4. Quarter car model 

lf it is assumed that the tyre does not leave the ground 
and that zl(t) and Q(t) are measured from the static equili- 
brium position, then the application of the fundamental 
law of dynamics leads to the linearised equations of 
motion: 

m 1 iI = fi(t) - f2(t) (16) 
ami 

m2 id0 = fi(t) , (17) 
in which 

fi(t) = k; (z&) - zl(t)) + bl (tit) - iI(t>) . (18) 
The Laplace transform of equations (16). (17) and (18). as- 
suming zero initial conditions, are given by 

ml s2 Zds) = kl 2x(s) + bl s zOl(s) - Fz(s) (19) 
and 

mz L? Zz(s) = F2(s) , m 
in which 

zol(S) = 23(s) - Zl(S) . (21) 
To analyse the vibration insulation of the sprung mass, 

two transmittances are defined: 

T(s) - “(‘) -- 
Zl(S) 

and S(s) = zlds) . 
Zl(S) 

(22) 

From equations (19) and (20). the expressions of T(s) and 
S(s) are given by: 
- for the traditional suspension 

T(s) = k2 + bp s S(s) = m2 s2 

k2+b2s+m2s2’ k2+b2s+m2s2 
; m 

- for the CRONE suspension 

T(s) = C(s) m2 s2 

C(s) + m2 s2 
and S(s) = 

C(s) + m2 s2 
. (24) 

To study ride comfort and road holding ability, three ad- 
ditional transmittances are defined: 

I&(s) &@, H12(s) =zlz(s) ad Hoi(s) =zot(s) 
Vdd Wd 

in which A;(s) is acceleration of the sprung mass, Z&s) 
suspension deflection, &(s) tyre deflection and V&) road 
input velocity. A commonly used road input model is that 
vO(t) is white noise whose intensity is proportional to the 
product of the vehicle’s forward speed and a road roughness 
parameter 141. 

11.2. Synthesis method 

The synthesis method of the CRONE suspension is 
based on the interpretation of transmittances T(s) and S(S) 
which can be written as: 

T(s) =& and S(s) =- , 
1 + B(s) 

in which 

(26) 

&)=co - . (27) . -- 
m2s;l 

. , 

The transmittances T(s) and S(s) can here be considered to 
be of an elementary control loop whose /3(s) is the open 
loop transmittance. 

Given that relation (27) expresses that a variation of 
sprung mass is accompanied by a variation of open loop 
gain, the principle of the second generation CRONE con- 
trol can be used by synthesising the open loop Nichols 
locus which traces a vertical template for the nominal 
sprung mass. 

A way of synthesising the open-loop Nichols locus 
consists in determining a transfer p(s) which successively 
presents Fig.5 
s an order-2 asymptotic behaviour at low frequencies to 
eliminate tracking error, 
- an order-n asymptotic behaviour, where n is between 1 
and 2, exclusively around frequency ou, to limit the syn- 
thesis of the non-integer derivation over a truncated tie- 
quency interval; 
- an order-l asymptotic behaviour at high muencies, to 
ensure satisfactory filtering of vibrations at high frequen- 
cies. 

i t lb WI dB 

OdB 

-iT; -n 7712 / -r/2 
I I I 
I WEI B 

1 Y 

wh I 

0 argfi (iu.d 

Fig. 5. Open-loop Nichols locus of 
the CRONE suspension 

Such localised behaviour can be obtained with a transmit- 
tance of the form: 

(‘+&r (cq lxs)= co (‘+&d s 
in which: 

@,,<<w,.,,og<<Wh and m=2-nc lW[. (29) 

Identification of equations (27) and (28) give.% 
l/Gz=ob 

and 

P +iS w = co (’ + $1 * 

(30) 

(31) 

The equation thus obtained defms the ideal version of the 
suspension. The corresponding real version [2] is defined 
by a transfer of integer order: 



Wtl - Oi+l _ uq>l; +-=a; 
Oi Oi Wi 

Bi5l.z q; aq +2h) ‘“; 

ai 

(32) 

(33) 

a = (Uq)“; Wi = wb qln and ON = ah 9-l”. 

with N number of cells. 
By defining the transmittances (25) with respect to 

vo(t), all frequencies contribute equally to their mean square 
values. That is why the determination of CRONE suspen- 
sion parameters is based on the minimisation of a criterion 
J composed of the Hz-norm of the transmittances Ha@). 
Hi2(jo) and H,-,i(jo), namely: 

J =e 
I 

~jH.@nj2d~+~ 
i 

4jHi2Q.“)(2d@ 

% % 

+e %]Hoi(jwl’dwIe 
i ob i 

oh (34) 

IH(jwj2do, 

in which pi are the weighting factors, hi the H2-norm 
computed for the traditional suspension used for compari- 
son, and H(jw) the transmittance between force F2(jw) de- 
veloped by the suspension and the road input velocity 
V,(jo), namely: 

H@) - F2cio) = rnz H&I)) . -- (35) 
vow 

To obtain a significant comparison between traditional 
and CRONE suspension performances, a constraint is fixed 
for the minimal sprung mass: equal unit gain frequency of 
open 100~ PO’@. 

HI. PERFORMANCE 

The traditional suspension is mar suspension whose pa- 
rameters are given by: 

- sprung mass : 150 kg 5 m2 < 300 kg; 
- unsprung mass : ml = 28.5 kg ; 
- stiffness of tyre : kl = 155 900 N/m ; 
- damping coefficient of tym : bl= 5ONs/m; 
- stiffness : k2 = 19 960 N/m ; 
- damping coefficient : b2 = 1 861 Ns/m ; 

From this data, the constrained optimisation of the cri- 
terion J, computed with the optimisation toolbox of Mat- 
lab, provides the optimal parameters of the CRONE sus- 
pension, namely: 
- for the ideal version: 

m = 0.75 ; co = 3 174 ; 
(35) 

wb = 0.628 rd/s ; a=314rd/s; 

N=5; co = 3 174 ; 

a = wi/wl = 3.2067 ; q = &+l/w.i = 1.4746 ; 

w; = 0.763 rd/s ; WI = 2.9 rals ; 

wa = 3.608 rd/s ; 02 = 11.6 rd/s ; (36) 

wi = 17.661 rd/s ; 03=54.7Kus: 

wh = 80.677 rd/s ; 04=258.7rd/s; 

0; = 317.92 rd/s. 

III.1. Frequency responses 

Figures 6 and 7 show frequency performances in open 
loop and in closed loop. 

Figure 6 gives the Nichols loci j3(jw) for the traditional 
and CRONE suspensions. The phase margin varies with 
mass m2 for the traditional suspension. On the other hand, 
phase margin is independent for the CRONE suspension, 
where the Nichols loci in open loop trace the template 
which characterizes the second generation CRONE control. 

Figure 7 gives the gain diagrams of T2(jo) for the tra- 
ditional and CRONE suspensions. For the CRONE sus- 
pension, the resonance ratio can be seen to be both weak 
and insensitive to variations of mass ms. This shows a 
better robustness of the CRONE suspension in the fre- 
quency domain. 

III.2. Step responses 

Figure 8 shows the step responses of the car body for 
both suspensions. For the CRONE suspension it can be 
seen that the first overshoot remains constan~ showing a 
better robustness for the CRONE suspension in the time 
domain. 

l-V. TECHNOLOGICAL SOLUTION 

The passive CRONE suspension is developed from the 
link between recursivity and non-integer derivation [2]. In 
fact, on a frequency interval, it is possible to synthcsise the 
non-integer derivation by using N elementary spring-damper 
cells whose time constants are distributed recursively (Fig. 
9). Each cell develops a force fi(t) defmed by: 

fi(t) = ki z&) + bi $GO) , (37) 

in which 

ki = q’-’ kt and bi=b bl 9 (38) 
a 

Q and q being the recursive factors and Zri(t) the relative 
displacement of cell i. 

From a symbolic ex ression of relation (37), namely 
Fi(s) = ki + bi S] zis)t P (39 

the transmittance of cell i is obtained, namely: 

z = [ki + b S] . (40) 
1s 

The arrangement being parallel, since 
fl(t) =...= fi(t) =...= fN(t) 

aid 
(41) 

$zi(t) - za(t)l = $ -p * (42) 

the global suspension transmit&e C&) is of the form for the real version: 
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Fig. 6. Nichols loci in open loop for (a) traditional and (b) CRONE suspensions: 
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Fig. 7. Gain diagrams of Tcjo) for traditional (a) and CRONE (b) suspensions: 

( )m2=150kg;(-----)m2=225kg;(-•-a-)m2=300kg 
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Fig. 8. Step responses of sprung mass for traditional (a) and CRONE (b) suspensions: 

( > m2 = 150 kg; (- - - - -) m2 = 225 kg; (- l - l -) m2 = 300 kg 



(43) 

Wi 

in which 0; ski 
bi’ 

(44) 

The reduction of expression (43) to the same denominator 
leads to the relation: 

(45) 

where, in the median frequency hterval~g]: 
Wi+l Wi+l -=--=Crq>1. 

Wi Wi 
(46) 

Finally, the expression of transmittance C&s) is in fact the 
same as relation (26), namely: 

The CRONE suspension which is the transposition of 
tractal robustness in mechanics, provides remarkable per- 
formance: better robustness of stability degree versus load 
variations of the vehicle. This robustness is due to the 
template which implicitly character&s the CRONE sus- 
pension. This template character&s the second-generation 
CRONE control explicitly. 

From the concept of the CRONE suspension, three 
technological solutions have been developed, Bench tests 
on prototypes have validated the theoretical expectations. 
One of them is proposed in the case of a French car, in par- 
ticular the CRONE BX Citroen which has received the 
“TROPHEE AFCET 95” as a national award. 

--Y’ 

in which 

(47) 

Co = 1 kl. 

1+?+ 
(48) 

i=l 7’ 

So, the non-integer-order suspension transmittance re- 
sults from a recursive distribution of zeros and poles in the 
frequency intend [wtl; w’N]. 

In the automotive domain, and to limit suspension di- 
mensions, gas springs are used, each being mounted with a 
damper [4]. The passive CRONE suspension (Fig. 10) is 
thus composed of N gas spring-damper cells in accordance 
with Fig. 9. 

The passive CRONE suspension is now mounted on an 
experimental Citroen BX. The modification to the tradi- 
tional suspension is minor. This consists of a brace with 
three drilled and tapped holes which permit a mechanical and 
hydraulic bond between the suspension jack and three gas 
springs. Each of these is inflated to a pressure providing a 
stiffness in accordance with synthesis. Each damper is 
mounted on a gas spring. The number of valves in each 
damper is determined to obtain a mean viscous friction co- 
eflicient in accordance with synthesis. 

V. CONCLUSION 

The developments of this paper have shown the trans- 
position of fiactal robusmess in automatics and mechanics 
through the CRONE control and the CRONE suspension. 

The dynamic model which governs the relaxation of 
water on porous dyke. consists in a differential equation of 
non integer or&r between 1 and 2. Damping is indeed ex- 
clusively linked to the non integer of the differential equa- 
tion imposed by the fractal dimension of the dyke. This 
expresses a remarkable property, that is to say fractaly de- 
tetmines damping in nature. The robustness of damping is 
illustrated by a frequency template in the Nichol’s plane 
whose form and vertical sliding ensure the invariance of 
the phase margin. 

I I 

bi 

I z, w 
_I 

Fig. 9. Recwsive arrangement of N elementary cells spring 

,Fig. 10. Passive CRONE suspension in the automotive 
domain 
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