ROBERT MARTY
Université de Perpignan
 
REFERENCES
 

  1. .T. Winograd, Formalisms for knowledge, Thinking, pp. 62-74, Cambridge University Press, (1977).

  2. .F. Rastier, Sur la semantique des reseaux, Quaderni di Semantica III (1), 115-131 (1987).

  3. .J.P. Descles, Reseaux Semantiques: la nature logique et linguistique des relateurs, Langages no 87, Semantique et Intelligence Artificielle, pp. 55-78, Larousse, Paris, (1987).

  4. .R. Wille, Restructuring Lattice Theory: An approach based on hierarchies of concepts, Ordered Sets, (Edited by 1. Rival), D. Reidel Publishing Company, Dordrecht, Holland, (1982).

  5. .D.J. Israel, Interpreting networks formalisms, Computers and Mathematics with Applications9 (1), 1-13 (1983).

  6. .J. Buchler, Philosophical Writings of Peirce, Dover Publications, (1955).

  7. .R. Marty, L'Algébre des Signes, John Benjamins B.V., Amsterdam, Philadelphia, (1990).

  8. .C.S. Peirce, Collected Papers, Harvard University Press, (1931); New Elements of Mathematics(Edited by C. Eisele), Mouton, The Hague, (1976); Microfilmed Manuscripts,Harvard Library, (1958).

  9. .J.F. Sowa, Conceptual Structures, Addison Wesley, Reading, Mass., (1984).

  10. . J. Adamek, Theory of Mathematical Structures, D. Reidel Publishing Company, Dordrecht, Holland, (1983).

  11. . H. Herrlich and G.E. Strecker, Category Theory, Allyn and Bacon, Boston, (1973).

  12. . S. MacLane, Categories for the Working Mathematician, Springer? Verlag, Berlin, Heidelberg, New York, (1971).

  13. . J.P. Changeux, L'Homme Neuronal, Fayard, Paris, (1983).

  14. . R. Jackendoff, Consciousness and the Computational Mind, The MIT Press, Cambridge, Mass., (1987).

  15. . C.S. Peirce, The Categories, in MS 717; Art. 1 and Art. 2, published in The New Elements of Mathematics, Vol. 4, (Edited by C. Eisele), Mouton, The Hague, page 307, (1976).

  16. . H.G. Herzberger, Peirce's Remarkable Theorem, Pragmatism and Purpose, pp. 41?58, University of Toronto Press, Canada, (1981).

  17. . R.W. Burch, A Peircian Reduction Thesis and the Foundations of Topological Logic, Texas Tech University Press, Lubbock, Texas (to appear).

  18. . W.V.O. Quine, Reduction to a dyadic predicate, Selected Logic Papers, Random House, New York, (1954).

  19. . J. Brunning, Genuine triads and teridentity (to appear).

  20. . K.L. Ketner, Most lucid and interesting paper, an introduction to cenopythagoreanism, International Philosophical Quarterly XXVI (4), 375?392 (1986).

  21. . D.S. Touretzky, The Mathematics of Inheritance Systems, Pitman, London, (1986).

  22. . R. Wille, Sur la fusion des contextes individuels, Revue de Mathematiques et Sciences Humaines (85), 57?71 (1984).

  23. . R. Marty, The category of relational structures as foundations of Peirce's phenomenology and semiotics (to appear) .

  24. . M. Chein, Algorithme de recherche des sous?matrices premieres d'une matrice, Bull. Math. R.S. Roumanie (13) (1969).

  25. . G. Fay, An algorithm for finite Galois connections, Journal of Computational Langages (10), 99?123 (1975).

  26. . B. Ganter, Two basic algorithms in concept analysis, preprint 831, page 28, Technische Hochshule Darmstadt, (1984).

  27. . E.M. Norris, An algorithm for computing the maximal rectangles in a binary relation, Revue Roumaine de Mathematiques Pares et Appliquees 23 (2), 243?250 (1978).

  28. . C.S. Hardwick, Ed., Semiotics and Signifies: The Correspondence between C.S. Peirce and Lady Victoria Welby, Indiana University Press, Bloomington, (1977).

BEFOR SUMMARY